Numerical Solution of Fractional Telegraph Equation via the Tau Method

نویسنده

  • ABBAS SAADATMANDI
چکیده

This paper presents a computational technique based on the Tau method and Legendre polynomials for the solution of a class of time-fractional telegraph equations. An appropriate representation of the solution via the Legendre operational matrix of fractional derivative is used to reduces its numerical treatment to the solution of a set of linear algebraic equations. The fractional derivatives are described based on the Caputo sense. The method is easy to implement and yields very accurate results. Illustrative examples are included to demonstrate the validity and applicability of the proposed technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical solution of Nagumo telegraph equation by Adomian decomposition method

In this work, the solution of a boundary value problem is discussed via asemi analytical method. The purpose of the present paper is to inspect theapplication of the Adomian decomposition method for solving the Nagumotelegraph equation. The numerical solution is obtained for some special casesso that demonstrate the validity of method.

متن کامل

A numerical solution of Nagumo telegraph equation by Adomian decomposition method

In this work, the solution of a boundary value problem is discussed via asemi analytical method. The purpose of the present paper is to inspect theapplication of the Adomian decomposition method for solving the Nagumo tele-graph equation. The numerical solution is obtained for some special cases sothat demonstrate the validity of method.

متن کامل

Numerical Solution of Space-time Fractional two-dimensional Telegraph Equation by Shifted Legendre Operational Matrices

Fractional differential equations (FDEs) have attracted in the recent years a considerable interest due to their frequent appearance in various fields and their more accurate models of systems under consideration provided by fractional derivatives. For example, fractional derivatives have been used successfully to model frequency dependent damping behavior of many viscoelastic materials. They a...

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

Chebyshev Spectral Collocation Method for Computing Numerical Solution of Telegraph Equation

In this paper, the Chebyshev spectral collocation method(CSCM) for one-dimensional linear hyperbolic telegraph equation is presented. Chebyshev spectral collocation method have become very useful in providing highly accurate solutions to partial differential equations. A straightforward implementation of these methods involves the use of spectral differentiation matrices. Firstly, we transform ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015